
Functional UI testing of
Adobe Flex RIA

Viktor Gamov
viktor.gamov@faratasystems.com

August, 12 2011

1

mailto:viktor.gamov@faratasystems.com
mailto:viktor.gamov@faratasystems.com

Agenda

• Why to test?

• How to test?

• What the automated testing means?

• Automated testing tools

• Automated testing architecture

• Loading automation classes

• Creating test-friendly applications

• Bunch of Demos

2

3

3

Software has to satisfy the
user!

3

Demo: Killer RIA

4

How to test?

• Unit Testing

• Functional (UAT, QA) Testing

• Integration Testing

• Load Testing

5

Metaphor: building the
house

• think of unit tests as having the building inspector
at the construction's site

• think of functional testing as having the
homeowner visiting the house and being
interested in how the house looks, if the rooms
have the desired size

6

What automated
testing means?

Automated testing is the use of software to control the
execution of tests, the comparison of actual outcomes to
predicted outcomes, and other test control and test
reporting functions.

7

General approaches

• Code-Driven Testing - the public (usually) interfaces to
classes, modules, or libraries are tested with a variety of input
arguments to validate that the returned results are correct.

• GUI Testing - a testing framework generates and records
the UI events keystrokes and mouse clicks. The tester observes
the changes reflected via the user interface to validate
the observable behavior of the program.

8

Some Automated
Testing tools

• HP QuickTest Professional (QTP)

• Selenium

• Ranorex

• FlexMonkey

9

HP QTP

• All-in-one suite for automation testing
enterprise applications

• Supports the large pool of software
development environments like SAP , Web ,
Oracle etc.

• Support libraries out-of-the-box with Flex
(qtp.swc, qtp_air.swc)

• VBScript as scripting language

10

Selenium

• Web applications testing

• Open source and large community

• Cross platform (Selenium IDE - browser
extension)

• Uses JavaScript as scripting language

11

Ranorex

• Similar to QTP, but easier to use

• Support various technologies: .NET, WPF,
Silverlight, Qt, Win32, WFC, Java SWT, Flash/
Flex

• Script languages C#, VB.NET, IronPython

• Integrates with Visual Studio 2010

• Platform: Windows only

12

Flex Monkey

• Open Source (commercial support available)

• Flex apps testing centric tool

• Cross platform (console - AIR application)

• Generated FlexUnit 4 test code

• Supports testing only Flex applications (no Flash)

• Integration with Selenium IDE (FlexMonkium
project)

13

Demo

14

Automated Testing
Architecture

• automation tool are applications that use the
data that provided by the agent.

• automation agent facilitates communications
between an application and an automation
tool.

• delegates are Flex framework components are
instrumented by attaching a delegate class to
each component at run time. The delegate class
defines the methods and properties required
to perform automation.

2264

Last updated 5/27/2011

Chapter 9: Testing and automation

Creating applications for testing
You can create applications and components that can be tested with automated testing tools such as HP QuickTest
Professional™ (QTP). The information in this topic is intended for Adobe® Flex™ developers who write applications
that are tested by Quality Control (QC) professionals who use these testing tools. For information on installing and
running the Flex plug-in with QTP, QC professionals should see Testing Adobe Flex Applications with HP QuickTest
Professional.

Full support for the Flex automation features is included in Adobe® Flash® Builder™ Premium. Adobe Flash Builder
Standard allows only limited use of this feature.

About automating applications with Flex
The automation feature provides developers with the ability to create applications that use the automation APIs. You
can use these APIs to create automation agents or to ensure that your applications are ready for testing. In addition,
the automation feature includes support for the QTP automation tool.

When working with the automation APIs, you should understand the following terms:

• automation agent (or, simply, agent) — An agent facilitates communication between an application and an
automation tool. The Flex Automation Package includes a plugin that acts as an agent between your applications
and the QTP testing tool.

• automation tool — Automation tools are applications that use the data that is derived through the agent. These tools
include QTP, Omniture, and Segue.

• delegates — Flex framework components are instrumented by attaching a delegate class to each component at run
time. The delegate class defines the methods and properties required to perform instrumentation.

The following illustration shows the relationship between an application, an agent, and an automation tool.

As this illustration shows, the automation tool uses an agent to communicate with the application built with Flex. The
agent can be an ActiveX control or other type of utility that fascilitates the interaction between the tool and the
application.

Automation
Tool

Agent

Application
built with Flex

15

Automation API
SystemManager

Automation
Automation

Manager
Delegates
Delegates
Delegates

Core Flex API

Automation API

QTP
Agent

FlexMonkey
Agent

Selenium
Agent

Agent Classes

Automation Tools QTP FlexMonkey Selenium

16

Automation flow

2292USING FLEX 4.5
Testing and automation

Last updated 5/27/2011

 var myXMLURL:URLRequest = new URLRequest("AutomationGenericEnv.xml");
 myLoader = new URLLoader(myXMLURL);
 automationManager.automationEnvironment = new CustomEnvironment(new XML(source));

In this example, the source is an XML file that defines the Flex metadata (or environment information). This metadata
includes the events and properties of the Flex components.

Note that representing events as XML is agent specific. The general-purpose automation API does not require it, but
the XML file makes it easy to adjust the granularity of the events that are recorded.

You are not required to create an instance of your adapter in the init() method. You can also create this instance in
the APPLICATION_COMPLETE event handler if your agent requires that the application must be initialized before it is
instantiated.

Understanding the automation flow
When the application is initialized, the AutomationManager object is created. In its init() method, it adds a listener
for Event.ADDED events.

The following image shows the order of events when the application is initialized and the AutomationManager class
constructs the delegate map.

1 The SystemManager class creates the display list, a tree of visible objects that make up your application.

2 Each time a new component is added, either at the root of the display list or as a child of another member of the
display list, SystemManager dispatches an Event.ADDED event.

3 The AutomationManager listens for the ADDED event. In its ADDED event handler, it calls methods on the
Automation class. It then instantiates the delegate for that class.

4 The Automation class maps each component in the display list to its full class name.

AutomationManager

Automation

Delegate

3. Listens for ADDED event.1. Creates the display list.

2. Dispatches the ADDED
 event for each UIComponent.

4. Maintains map of component
 class to delegate class.

5. Handles component events.
 Records and plays back events
 on component instances.

map[Button] = map[spark.components.Button]
map[HGroup] = map[spark.components.HGroup]
. . .

SystemManager

Display List

 HGroup

 Accordion

 Button
 TextArea
 HGroup

 TextInput
 TextInput
 Button

{ }

map[spark.components.Button] = SparkButtonAutomationImpl
map[spark.components.HGroup] = SparkGroupAutomationImpl
. . .{ }

17

Automation flow

2293USING FLEX 4.5
Testing and automation

Last updated 5/27/2011

5 When it is created, the delegate class adds a reference to its instance in the delegate class map. The delegate class
then handles events during record and play-back sequences.

The delegate is now considered registered with the component. It adds event listeners for the component’s events
and calls the AutomationManager when the component triggers those events.

After the components in the display list are instantiated and mapped to instances of their delegate classes, the
AutomationManager is ready to listen for events and forward them to the agent for processing.

The following image shows the flow of operation when a user performs an action that is a recordable event. In this case,
the user clicks a Button control in the application.

1 The user clicks the Button control in the application. The SystemManager dispatches a MouseEvent.CLICK event.

2 The SparkButtonAutomationImpl class, the Button control’s automation delegate, listens for click events. In the
delegate’s click event handler, the delegate calls the AutomationManager recordAutomationEvent() method.
(It is likely that the button also defines a click event handler to respond to the user action, but that is not shown.)

3 The AutomationManager’s recordAutomationEvent() method dispatches an
AutomationRecordEvent.RECORD event. In that event, the replayableEvent property points to the original
click event.

4 The custom agent class listens for RECORD events. When it receives the RECORD event, it uses the replayableEvent
property to access the properties of the original event.

5 The agent records the event properties in a database, logs the event properties, or gets information about the user
before recording them.

Creating agents
You create an agent as a SWC file and link it into the application by using the include-libraries compiler option.
You can link multiple agents in any number of SWC files to the same application. However, to use multiple agents at
the same time, you must use the same environment configuration files for all agents.

The general process for creating a custom agent is:

• Mark the agent class as a mixin; this triggers a call to a static init() method from the SystemManager class on
application start up.

• Get a reference to the AutomationManager class.

• Add event listeners for the APPLICATION_COMPLETE and RECORD events.

• Load the environment information (Flex metadata that describes the objects and operations of the application).
Environment information can be an XML file or it can be in some other data format.

Automation-
Manager

Application
built with Flex

Agent

Delegate

Button

3. recordAutomationEvent() called.

1. User clicks on a component.

4. Dispatches RECORD event. 5. Handles RECORD events.

2. Listens for component events
 such as CLICK.

18

Loading automation
classes

• Compile time - To compile an application that includes the
automation classes, include automation libraries at compile time by
using the compiler’s include-libraries option.

• Run time - Compile your app without any additions. At run
time, load your application into a wrapper SWF file that has built in
automation libraries. This wrapper SWF file uses SWFLoader to
load your application SWF file to be tested.

19

Creating test-friendly
applications

• providing meaningful identification of objects
“submitPanel” rather than “myPanel” or “p1”

• avoiding renaming objects
if (!automationName) return label;

• adding and removing containers from the
automation hierarchy
showInAutomationHierarchy = false;

• instrumenting events

• instrumenting custom components

20

Instrumenting events

• instrumenting existing events - the tools are not
generally interested in recording all the events : MOUSE_OVER

• instrumenting custom events - when you extend
components, you often add events that are triggered by new
functionality of that component

• blocking and overriding events - in some cases,
you might want to block or override the default events that are
recorded for a component

21

Instrumenting existing
events

• override the replayAutomatableEvent()
method of the IAutomationObject interface

• call the AutomationManager’s
recordAutomatableEvent() method when a
button dispatch MOUSE_MOVE event

• define the new event for the agent

22

Instrumenting custom
events

• call the Automation.automationManager2 class’s
recordCustomAutomationEvent() method

• define the new event for the agent

• listen for the AutomationCustomReplayEvent,
get the details about it and replay the event

23

What is a custom
component

• A component extending from a standard component
(No additional events, no additional properties)

• A component extending from a standard component –
Additional events/ additional properties

• A component extending from a non container class, but
the current class is a container.

24

Instrumenting custom
components

• create a delegate class that implements the required
interfaces (IAutomationObject)

• add testing-related code to the component (not
recommended)

25

Create a delegate class

• use a pattern for delegate class name
[ComponentClassName]AutomationImpl

• extend the UIComponentAutomationImpl
or implement IAutomationObject interface

• mark the delegate class as a mixin by using
the [Mixin] metadata keyword

• register the delegate with the
AutomationManager by calling the
Automation.registerDelegateClass()

26

Instrument component
with a delegate class

• override the getters of the automationName and the
automationValue properties

• add listeners for events that the automation tool
records

• override the replayAutomatableEvent() method

• add the new component to custom class definition
XML file (FlexMonkeyEnv.xml)

27

Instrument composite
component

• override the getter of the numAutomationChildren
property and the methods to expose children:

• getAutomationChildren()

• getAutomationChildrenAt()

28

29

And one more thing...

29

PROBLEM

• Unless tests are run automatically, testing is
ineffective

30

Solution: Use Jenkins

• Will automatically run tests for you

• Will tell you if they fail

• Provide you reports, result and metrics

• Can be downloaded from http://jenkins-ci.org/

• Very easy to setup and configure

31

http://jenkins-ci.org/
http://jenkins-ci.org/

32

Demo

33

Instead of an epilogue

34

«90% of coding is debugging. The other 10% is writing bugs»
Bram Cohen, author of the BitTorrent protocol

«If debugging is the process of removing bugs then
programming must be the process of putting them in»

Edsger Dijkstra

35

Be brave!
Just test and no more bugs!

36

Resources

• GorillaLogic http://goo.gl/Ly6dd

• FlexMonkey resources page http://goo.gl/
eKKaZ

• Ranorex Flex Testing http://goo.gl/sJI1L

• Automation Docs http://goo.gl/PwuZc

• Blog on Flex Automation http://goo.gl/CCQ80

37

http://clck.ru/BXV4
http://clck.ru/BXV4
http://goo.gl/eKKaZ
http://goo.gl/eKKaZ
http://goo.gl/eKKaZ
http://goo.gl/eKKaZ
http://clck.ru/BXUk
http://clck.ru/BXUk
http://clck.ru/BqbU
http://clck.ru/BqbU

p.s. Sample code

https://github.com/gAmUssA/flex_flexmonkey_flexunit_ci

38

https://github.com/gAmUssA/flex_flexmonkey_flexunit_ci
https://github.com/gAmUssA/flex_flexmonkey_flexunit_ci

